最近 作者: 主题: 内容:
 进入版区才能发表文章 
 您当前的位置: 推理之门 > 谜题解析 > 谜题大全   【版主】:tl,艾米,popodian 字体大小:
1页/共1页(总计0个回复)
主 题: IBM挑战2005年7月:长方桌上的硬币(人气:402)
 猫猫漫步猫猫打开猫猫的博客
1 楼: IBM挑战2005年7月:长方桌上的... 06年05月02日10点59分


IBM挑战2005年7月:长方桌上的硬币

在一张长方形的桌面上放了n个一样大小的圆形硬币。这些硬币中可能有一些不完全在桌面内,也可能有一些彼此重叠;当再多放一个硬币而它的圆心在桌面内时,新放的硬币便必定与原先某些硬币重叠。请证明整个桌面可以用4n个硬币完全覆盖。

本月不用向IBM提交答案,但欢迎在本版讨论。

英文原文

Ponder This Challenge:

Puzzle for July 2005. Solutions will not be solicited.

This puzzle was suggested by Alan O'Donnell.

We are not asking for solutions this month.

Upon a rectangular table of finite dimensions L by W, we place n identical, circular coins; some of the coins may be not entirely on the table, and some may overlap. The placement is such that no new coin can be added (with its center on the table) without overlapping one of the old coins. Prove that the entire surface of the table can be covered completely by 4n coins.




  点击复制本贴地址:





follow the notes upon the journey
The road back hidden in the fast Lane melody
the first sight is you destiny?
主页http://user.qzone.qq.com/7501762



 

※来源: 【 推理之门 Tuili.Com 】.

1页/共1页(总计0个回复)
每次上网自动访问推理之门   |    将推理之门加入收藏夹
邮件联系:zhejiong@126.com  沪ICP备2021006552号  沪公网安备31011502006128号  推理之门  版权所有 2000-2026