最近 作者: 主题: 内容:
 进入版区才能发表文章 
 您当前的位置: 推理之门 > 谜题解析 > 谜题大全   【版主】:tl,艾米,popodian 字体大小:
1页/共1页(总计7个回复)
主 题: 枪是怎样装的(人气:590)
 boyxuan饮雨山人
1 楼: 枪是怎样装的 01年11月25日16点27分


我是一个军火贩子,明天要有一笔大生意,一个老板要进一大批枪。我现在总共有1000支枪,还不知道那个老板要买几支。我有十个箱子,现在我把1000支枪放在了箱子中,锁上了,我能够保证明天无论那老板向我要几支枪,只要不超过1000支,我都能不拆箱子就拿给他(举个例子,如果他要5支,我的两个箱子分别装了2支和3支,我只要把这两个箱子给他就行了)。请问你知道我是怎样装的吗?


  点击复制本贴地址:





封刀挂剑
退隐江湖

※来源: 【 推理之门 Tuili.Com 】.

 兰迪斯兰迪斯
2 楼: Re:枪是怎样装的 01年11月24日17点16分


【boyxuan在大作中谈到:】

>我是一个军火贩子,明天要有一笔大生意,一个老板要进一大批枪。我现在总共有1000支枪,还不知道那个老板要买几支。我有十个箱子,现在我把1000支枪放在了箱子中,锁上了,我能够保证明天无论那老板向我要几支枪,只要不超过1000支,我都能不拆箱子就拿给他(举个例子,如果他要5支,我的两个箱子分别装了2支和3支,我只要把这两个箱子给他就行了)。请问你知道我是怎样装的吗?
第1个箱子装1支
第2个箱子装2支
第3个箱子装4支
第4个箱子装8支
第5个箱子装16支
第6个箱子装32支
第7个箱子装64支
第8个箱子装128支
第9个箱子装256支
更正:第10个箱子装489支.多谢大力提醒.
对吧?;)






真相永远只有一个,
 But...
  是丰富多采的!

※来源: 【 推理之门 Tuili.Com 】.

 holmos大力
3 楼: Re:Re:枪是怎样装的 01年11月24日17点24分


【兰迪斯在大作中谈到:】

>第1个箱子装1支
>第2个箱子装2支
>第3个箱子装4支
>第4个箱子装8支
>第5个箱子装16支
>第6个箱子装32支
>第7个箱子装64支
>第8个箱子装128支
>第9个箱子装256支
>第10个箱子装512支
>对吧?;)

最后一个箱子只有489支哦,呵呵..






没有完美的犯罪......

※来源: 【 推理之门 Tuili.Com 】.

 兰迪斯兰迪斯
4 楼: Re:Re:Re:枪是怎样装的 01年11月24日17点31分


【holmos在大作中谈到:】

>【兰迪斯在大作中谈到:】
>>
>>第1个箱子装1支
>>第2个箱子装2支
>>第3个箱子装4支
>>第4个箱子装8支
>>第5个箱子装16支
>>第6个箱子装32支
>>第7个箱子装64支
>>第8个箱子装128支
>>第9个箱子装256支
>>第10个箱子装512支
>>对吧?;)

>最后一个箱子只有489支哦,呵呵..
不好意思,我忘了数枪了.






真相永远只有一个,
 But...
  是丰富多采的!

※来源: 【 推理之门 Tuili.Com 】.

 boyxuan饮雨山人
5 楼: Re:枪是怎样装的 01年11月24日20点38分


呵呵,又被猜出来了






封刀挂剑
退隐江湖

※来源: 【 推理之门 Tuili.Com 】.

 dragonballdragonball
6 楼: Re:枪是怎样装的 01年11月25日15点55分


好厉害!这是怎么猜出的啊?






GUESS!

※来源: 【 推理之门 Tuili.Com 】.

 liuyuhen柳余恨
7 楼: Re:Re:Re:枪是怎样装的 01年11月25日16点13分


【holmos在大作中谈到:】

>【兰迪斯在大作中谈到:】
>>
>>第1个箱子装1支
>>第2个箱子装2支
>>第3个箱子装4支
>>第4个箱子装8支
>>第5个箱子装16支
>>第6个箱子装32支
>>第7个箱子装64支
>>第8个箱子装128支
>>第9个箱子装256支
>>第10个箱子装512支
>>对吧?;)

>最后一个箱子只有489支哦,呵呵..


我想知道推理过程,能否赐教?不是简单的答案(当然,这个答案当然不简单了,我的意思是相对与你想到这个答案的过程)
谢谢






我更喜欢别人称呼我为Bora
-----即使作为一辆车,能够与POLO齐名,也是一种莫大的荣幸.

※来源: 【 推理之门 Tuili.Com 】.

 holmos大力
8 楼: Re:Re:Re:Re:枪是怎样装的... 01年11月25日16点27分


【liuyuhen在大作中谈到:】

>我想知道推理过程,能否赐教?不是简单的答案(当然,这个答案当然不简单了,我的意思是相对与你想到这个答案的过程)
>谢谢

怎么说呢,我想应该是利用了二进制计数法的特性吧。
试想,二进制中,任何一个数字都可以用2进制来表示,而二进制的特性就体现在每位数字只有两种情况:1或者0,在这里代表着什么意思呢?我们可以把每位数字看成一个箱子,当这位数字是1的时候,就表示应当给出这个箱子给对方,如果这位数字是0,则表示不用给。
我想关键就在于二进制的特性。






没有完美的犯罪......

※来源: 【 推理之门 Tuili.Com 】.

1页/共1页(总计7个回复)
每次上网自动访问推理之门   |    将推理之门加入收藏夹
邮件联系:zhejiong@126.com  沪ICP备2021006552号  沪公网安备31011502006128号  推理之门  版权所有 2000-2024